
Package: lsbclust (via r-universe)
September 12, 2024

Type Package

Title Least-Squares Bilinear Clustering for Three-Way Data

Version 1.1

Date 2019-04-15

Author Pieter Schoonees [aut, cre], Patrick Groenen [ctb]

Maintainer Pieter Schoonees <schoonees@gmail.com>

Description Functions for performing least-squares bilinear clustering
of three-way data. The method uses the bilinear decomposition
(or bi-additive model) to model two-way matrix slices while
clustering over the third way. Up to four different types of
clusters are included, one for each term of the bilinear
decomposition. In this way, matrices are clustered
simultaneously on (a subset of) their overall means, row
margins, column margins and row-column interactions. The
orthogonality of the bilinear model results in separability of
the joint clustering problem into four separate ones. Three of
these sub-problems are specific k-means problems, while a
special algorithm is implemented for the interactions. Plotting
methods are provided, including biplots for the low-rank
approximations of the interactions.

License GPL (>= 2)

Depends R (>= 3.5), stats, ggplot2

Imports plyr, clue, grid, gridExtra, reshape2, Rcpp, mvtnorm,
graphics, methods, doParallel, foreach, parallel

LinkingTo Rcpp

LazyData yes

LazyLoad yes

ByteCompile yes

BuildResaveData best

NeedsCompilation yes

RoxygenNote 6.1.1

1

2 Contents

Encoding UTF-8

Date/Publication 2019-04-15 09:32:39 UTC

Repository https://schoonees.r-universe.dev

RemoteUrl https://github.com/cran/lsbclust

RemoteRef HEAD

RemoteSha 2a10cf0fdf9f216fbe0a86f271e4f118416272f6

Contents
lsbclust-package . 3
akmeans . 3
bicomp . 4
carray . 4
cfsim . 5
cfsim.akmeans . 5
cfsim.lsbclust . 6
cfsim.T3Clusf . 6
ClustMeans . 7
cl_class_ids.int.lsbclust . 8
cmat . 9
dcars . 9
fitted.akmeans . 10
fitted.lsbclust . 11
fitted.T3Clusf . 11
genproc . 12
indarr . 12
int.lsbclust . 13
KMeansW . 14
LossMat . 15
lov . 16
lsbclust . 17
meanbiplot . 19
meanheatmap . 19
orc.lsbclust . 20
plot.bicomp . 21
plot.col.kmeans . 21
plot.int.lsbclust . 22
plot.lsbclust . 24
plot.ovl.kmeans . 25
plot.row.kmeans . 26
plot.step.lsbclust . 26
plot.T3Clusf . 27
print.lsbclust . 28
rlsbclust . 28
rorth . 30
simsv . 30

lsbclust-package 3

sim_lsbclust . 31
step.lsbclust . 32
summary.int.lsbclust . 34
summary.lsbclust . 34
supermarkets . 35
T3Clusf . 35

Index 37

lsbclust-package Least Squares Latent Class Matrix Factorization

Description

Funtions for least squares latent class matrix factorizations.

Author(s)

Pieter C. Schoonees [aut, cre], Patrick J.F. Groenen [aut]

References

Van Rosmalen, J., Van Herk, H., & Groenen, P. J. F. (2010). Identifying response styles: A latent-
class bilinear multinomial logit model. Journal of Marketing Research, 47(1), 157-172.

akmeans K-Means Over One Way of An Three-Way Array

Description

Vectorize matrix slices over a specific way of an three-way array, and conduct kmeans on it.

Usage

akmeans(data, centers, margin = 3L, ndim = NULL, ...)

Arguments

data Three-way data array

centers Passed to kmeans

margin Integer indicating which way to cluster over

ndim The rank of the low dimensional approximation of the matrix slices to construct
before clustering (using svd)

... Additional arguments passed to kmeans

4 carray

Examples

set.seed(1)
res <- akmeans(data = carray(dcars), margin = 3L, centers = 5, nstart = 10)

bicomp Bilinear Decomposition of a Matrix

Description

Decomposes a matrix into an overall mean matrix, row margins matrix, column margins matrix and
an interaction matrix, depending on delta.

Usage

bicomp(x, delta = c(1, 1, 1, 1), which = 0L:4L)

Arguments

x A matrix to be decomposed.
delta A vector of length four with 0/1 entries which controls the type of decomposition

made.
which A vector giving the elements to return, with 0 = original data, 1 = overall means,

2 = row means, 3 = column means and 4 = interactions.

Value

An object of class bicomp, possible also inheriting from class data.frame, which is either a named
list with the required components, or a single matrix if a single component is requested. An addi-
tional attribute return_type gives information on the type of matrices returned.

carray Double-Centre a Three-way Array

Description

Double-centre the matrix slices of a three-way array.

Usage

carray(array, margin = 3L, rows = TRUE, columns = TRUE)

Arguments

array A three-way array
margin The way of the array over which the centring must be done
rows Logical indicating whether to centre the rows of the matrix slices
columns Logical indicating whether to centre the columns of the matrix slices

cfsim 5

cfsim Compare Simulation Results

Description

Generic function to compare simulation results in lsbclust.

Usage

cfsim(fitted, actual, method = c("diag", "cRand"))

Arguments

fitted An object of class lsbclust containing the fitted results.

actual An object of class lsbclust_sim containing the simulated data.

method The type of statistics to calculate, passed to cl_agreement

See Also

cfsim.lsbclust, cfsim.T3Clusf

cfsim.akmeans Compare LSBCLUST Simulation Results

Description

This function compares cluster membership and parameter estimates for the results of akmeans on
simulated data, constructed using rlsbclust, to the true underlying values.

Usage

S3 method for class 'akmeans'
cfsim(fitted, actual, method = c("diag", "cRand"))

Arguments

fitted An object of class akmeans containing the fitted results.

actual An object of class lsbclust_sim containing the simulated data.

method The method for calculating cluster agreement across random starts, passed on to
cl_agreement. None is calculated when set to NULL.

6 cfsim.T3Clusf

Examples

Simulate LSBCLUST data, fit akmeans on double-centered data, and compare
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
dat[[1]]$data <- carray(dat[[1]]$data)
res <- akmeans(data = dat[[1]]$data, centers = 5, margin = 3, ndim = 2)
cfsim(res, dat[[1]])

cfsim.lsbclust Compare LSBCLUST Simulation Results

Description

This function compares cluster membership and parameter estimates for the results of lsbclust on
simulated data to the true underlying values.

Usage

S3 method for class 'lsbclust'
cfsim(fitted, actual, method = c("diag", "cRand"))

Arguments

fitted An object of class lsbclust containing the fitted results.

actual An object of class lsbclust_sim containing the simulated data.

method The type of statistics to calculate, passed to cl_agreement

Examples

Simulate LSBCLUST data, fit LSBCLUST, and compare
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5))
cfsim(res, dat[[1]])

cfsim.T3Clusf Compare LSBCLUST Simulation Results

Description

This function compares cluster membership and parameter estimates for the results of T3Clusf on
simulated data, using rlsbclust, to the true underlying values.

Usage

S3 method for class 'T3Clusf'
cfsim(fitted, actual, method = c("diag", "cRand"))

ClustMeans 7

Arguments

fitted An object of class lsbclust containing the fitted results.

actual An object of class lsbclust_sim containing the simulated data.

method The method for calculating cluster agreement across random starts, passed on to
cl_agreement. None is calculated when set to NULL.

Examples

Simulate LSBCLUST data, fit T3Clusf on double-centered data, and compare
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
dat[[1]]$data <- carray(dat[[1]]$data)
res <- T3Clusf(X = dat[[1]]$data, Q = 2, G = 5)
cfsim(res, dat[[1]])

ClustMeans C++ Function for Cluster Means

Description

This function calculates the cluster means in vectorized form based on the current value of the
clustering vector.

Usage

ClustMeans(nclust, start, data)

Arguments

nclust The number of clusters.

start The current clustering vector.

data The concatenated data, with J * K rows and N columns

Value

A numeric matrix with nclust rows and J*K columns.

8 cl_class_ids.int.lsbclust

cl_class_ids.int.lsbclust

S3 export

Description

These export into the framework set out in package clue.

Usage

S3 method for class 'int.lsbclust'
cl_class_ids(x)

S3 method for class 'int.lsbclust'
is.cl_partition(x)

S3 method for class 'int.lsbclust'
is.cl_hard_partition(x)

S3 method for class 'lsbclust_sim_part'
cl_class_ids(x)

S3 method for class 'lsbclust_sim_part'
is.cl_partition(x)

S3 method for class 'lsbclust_sim_part'
is.cl_hard_partition(x)

S3 method for class 'T3Clusf'
cl_class_ids(x)

S3 method for class 'T3Clusf'
is.cl_partition(x)

S3 method for class 'T3Clusf'
is.cl_hard_partition(x)

S3 method for class 'akmeans'
cl_class_ids(x)

S3 method for class 'akmeans'
is.cl_partition(x)

S3 method for class 'akmeans'
is.cl_hard_partition(x)

cmat 9

Arguments

x An object of class int.lsclust

cmat Centring Matrix

Description

A utility function for calculating centring matrices.

Usage

cmat(k)

Arguments

k An integer determining the dimensions of the centring matrix.

dcars Dutch Cars Data

Description

This data set relates to 187 Dutch households rating 10 automobile manufacturers according to 8
variables (original Dutch terms in parentheses): price (prijsniveau), design (vormgeving), safety
(veiligheid), operating cost (gebruikskosten),) sportiness (sportiviteit), size (modelgrootte), relia-
bility (betrouwbaarheid) and feautures (uitrusting). A rating scale from 1 to 10 was used.

Usage

dcars

Format

A three-way array with cars in the first dimension, variables in the second and consumers in the
third dimension.

The items and labels for the endpoints of the scales are (original Dutch labels in parentheses):
Affordability A rating from 1 = Expensive (duur) to 10 = Cheap (goedkoop)
Attractiveness A rating from 1 = Ugly (lelijk) to 10 = Beautiful (mooi)
Safety A rating from 1 = Bad (slecht) to 10 = Good (goed)
OperatingCost A rating from 1 = Low (laag) to 10 = High (hoog)
Sportiness A rating from 1 = Slow (langzaam) to 10 = Fast (snel)
Size A rating from 1 = Large (groot) to 10 = Small (klein)
Reliability A rating from 1 = Bad (slecht) to 10 = Good (goed)
Features A rating from 1 = Simple (eenvoudig) to 10 = Luxurious (luxe)

10 fitted.akmeans

Details

The original sample consisted of 188 households. However, one of these households (code 87845)
was discarded because it appears that they used a rating scale from 0 to 10 instead of from 1 to
10. Note that all rating scales has been reversed so that higher scores are better for most items.
The exceptions are OperatingCost and Size, where larger values mean higher costs and smaller cars
respectively.

Source

Tammo Bijmolt, Michel van de Velden

Examples

data("dcars")
set.seed(5448)
m <- lsbclust(data = dcars, delta = c(1, 1, 1, 1), nclust = c(5, 3, 6, 8), nstart = 5,

nstart.kmeans = 10, parallel = FALSE, fixed = "columns")

fitted.akmeans Extract Fitted Values for akmeans

Description

An S3 method for fitted for class "akmeans".

Usage

S3 method for class 'akmeans'
fitted(object, ...)

Arguments

object An object of class "akmeans"

... Unimplemented

Value

An array approximating the original data

See Also

akmeans

fitted.lsbclust 11

fitted.lsbclust Extract Fitted Values for LSBCLUST

Description

An S3 method for fitted for class "lsbclust".

Usage

S3 method for class 'lsbclust'
fitted(object, ...)

Arguments

object An object of class "lsbclust"

... Unimplemented

Value

An array approximating the original data

See Also

lsbclust

fitted.T3Clusf Extract Fitted Values for T3Clusf

Description

An S3 method for fitted for class "T3Clusf".

Usage

S3 method for class 'T3Clusf'
fitted(object, ...)

Arguments

object An object of class "T3Clusf"

... Unimplemented

Value

An array approximating the original data

12 indarr

See Also

T3Clusf

genproc Generalized Procrustes Rotation

Description

This function finds K orthogonal rotation matrices so that the rotated versions of the input con-
figurations match each other optimally in the least-squares sense. The algorithm depends on the
starting values for the rotation matrices. At present identity matrices are used as starting values.
Only rotations / reflections are considered – no scaling or translation factors are included.

Usage

genproc(configs, maxit = 50L, reltol = 1e-06, random = FALSE)

Arguments

configs A list of original configuration matrices

maxit The maximum number of iterations allowed

reltol The relative error tolerance for determining numeric convergence.

random Logical indicating whether or not to use random starts (only applicable when
the dimensionality is two).

References

Gower, J. C., & Dijksterhuis, G. B. (2004). Procrustes problems (Vol. 3). Oxford: Oxford Univer-
sity Press.

indarr Create Array of Indicator Matrices

Description

This function takes a matrix or data.frame and the number of rating categories maxcat and pro-
duces a three-way array of m by maxcat indicator matrices, one for each of the n rows. The input x
must be a matrix or data.frame of dimensions n by m which contains the ratings on a scale of 1 to
maxcat for m items. Note that missing values (NA’s) will not appear in the columns.

Usage

indarr(x, maxcat, na.add = TRUE)

int.lsbclust 13

Arguments

x a matrix of data.frame

maxcat an integer indicating the maximum of the rating scale (which is assumed to start
with 1)

na.add logical indicating whether to add a designated category for missings or not. De-
faults to TRUE.

Value

A list of rating by item indicator matrices.

Author(s)

Pieter C. Schoonees

Examples

data("lov")
arr <- indarr(lov[1:10, 1:9], maxcat = 9)
str(arr)

int.lsbclust Interaction Clustering in Least Squares Bilinear Clustering

Description

This function implements the interaction clustering part of the Least Squares Bilinear Clustering
method of Schoonees, Groenen and Van de Velden (2014).

Usage

int.lsbclust(data, margin = 3L, delta, nclust, ndim = 2,
fixed = c("none", "rows", "columns"), nstart = 50, starts = NULL,
alpha = 0.5, parallel = FALSE, mc.cores = detectCores() - 1,
maxit = 100, verbose = 1, method = "diag", minsize = 3L,
return_data = FALSE)

Arguments

data A three-way array representing the data.

margin An integer giving the single subscript of data over which the clustering will be
applied.

delta A four-element binary vector (logical or numeric) indicating which sum-to-zero
constraints must be enforced.

nclust An integer giving the desired number of clusters. If it is a vector, the algorithm
will be run for each element.

14 KMeansW

ndim The required rank for the approximation of the interactions (a scalar).

fixed One of "none", "rows" or "columns" indicating whether to fix neither sets of
coordinates, or whether to fix the row or column coordinates across clusters
respectively. If a vector is supplied, only the first element will be used.

nstart The number of random starts to use.

starts A list containing starting configurations for the cluster membership vector. If
not supplied, random initializations will be generated.

alpha Numeric value in [0, 1] which determines how the singular values are distributed
between rows and columns.

parallel Logical indicating whether to parallelize over different starts or not.

mc.cores The number of cores to use in case parallel = TRUE, passed to makeCluster.

maxit The maximum number of iterations allowed.

verbose Integer controlling the amount of information printed: 0 = no information, 1 =
Information on random starts and progress, and 2 = information is printed after
each iteration for the interaction clustering.

method The method for calculating cluster agreement across random starts, passed on to
cl_agreement. None is calculated when set to NULL.

minsize Integer giving the minimum size of cluster to uphold when reinitializing empty
clusters.

return_data Logical indicating whether to include the data in the return value or not

Value

An object of class int.lsb

Examples

data("supermarkets")
out <- int.lsbclust(data = supermarkets, margin = 3, delta = c(1,1,0,0), nclust = 4, ndim = 2,

fixed = "rows", nstart = 1, alpha = 0)

KMeansW C++ Function for Weighted K-Means

Description

This function does a weighted K-means clustering.

Usage

ComputeMeans(cm, data, weight, nclust)

AssignCluster(data, weight, M, nclust)

KMeansW(nclust, start, data, weight, eps = 1e-08, IterMax = 100L)

LossMat 15

Arguments

cm Numeric vector of class indicators.

data The concatenated data, with N rows and M columns. Currently, the columns are
clustered.

weight The vector of length nrows(data) with weights with nonnegative elements.

nclust The number of clusters.

M Matrix of cluster means.

start The current cluster membership vector.

eps Numerical absolute convergence criteria for the K-means.

IterMax Integer giving the maximum number of iterations allowed for the K-means.

Value

A list with the folowing values.

centers the nclust by M matrix centers of cluster means.

cluster vector of length N with cluster memberships.

loss vector of length IterMax with the first entries containing the loss.

iterations the number of iterations used (corresponding to the number of nonzero entries
in loss)

Examples

set.seed(1)
clustmem <- sample.int(n = 10, size = 100, replace = TRUE)
mat <- rbind(matrix(rnorm(30*4, mean = 3), nrow = 30),

matrix(rnorm(30*4, mean = -2), nrow = 30),
matrix(rnorm(40*4, mean = 0), nrow = 40))

wt <- runif(100)
testMeans <- lsbclust:::ComputeMeans(cm = clustmem, data = mat, weight = wt, nclust = 3)
testK <- lsbclust:::KMeansW(start = clustmem, data = mat, weight = wt, nclust = 3)

LossMat C++ Function for Interaction Loss Function

Description

This function calculates the loss function for the interaction clustering for all data slices and clusters
means. The inputs are numeric matrices.

Arguments

x The data matrix, with the N slices strung out as vectors in the columns.

y The matrix of cluster means, with each mean represented by a row.

16 lov

Value

A numeric matrix with nclust rows and N columns.

lov List-of-values Data Set

Description

This is the list-of-values data set used in Van Rosmalen, Van Herk & Groenen (2010). Column
names and factor labels differ slightly from that paper. Missing values are encoded as NA as usual.
The first nine columns are items answered on a nine-point rating scale, with rating 1 representing
’very important’ and category 9 ’not important at all’. The respondents were asked how important
each of these items are as a guiding principle in their lives.

Usage

data("lov")

Format

A data frame with 4514 observations on the following 12 variables.

Belonging a numeric vector; ’a sense of belonging’

Excitement a numeric vector

Relationships a numeric vector; ’warm relationships with others’

Self-fulfilment a numeric vector

Respected a numeric vector; ’being well-respected’

Enjoyment a numeric vector; ’fun and enjoyment’

Security a numeric vector

Self-respect a numeric vector

Accomplishment a numeric vector; ’a sense of accomplishment’

Country a factor with levels Britain, France, Germany, Italy and Spain

Education a factor with levels Low and High

Age a factor with levels -25, 25-39, 40-54 and 55+

Source

Joost van Rosmalen

References

Van Rosmalen, J., Van Herk, H., & Groenen, P. J. (2010). Identifying response styles: A latent-class
bilinear multinomial logit model. Journal of Marketing Research, 47(1), 157-172.

lsbclust 17

Examples

data("lov")

Construct array
lovarr <- indarr(lov[, 1:9], maxcat = 9)

Run analysis
set.seed(13841)
fit <- lsbclust(data = lovarr, margin = 3, delta = c(0, 1, 0, 0), nclust = c(NA, 11, NA, 5),

fixed = "rows", nstart = 1, iter.max = 50, nstart.kmeans = 10)

lsbclust Least-squares Bilinear Clustering of Three-way Data

Description

This function clusters along one way of a three-way array (as specified by margin) while decompos-
ing along the other two dimensions. Four types of clusterings are allowed based on the respective
two-way slices of the array: on the overall means, row margins, column margins and the interac-
tions between rows and columns. Which clusterings can be fit is determined by the vector delta,
with four binary elements. All orthogonal models are fitted. The nonorthogonal case delta = (1,
1, 0, 0) returns an error. See the reference for further details.

Usage

lsbclust(data, margin = 3L, delta = c(1L, 1L, 1L, 1L), nclust,
ndim = 2L, fixed = c("none", "rows", "columns"), nstart = 20L,
starts = NULL, nstart.kmeans = 500L, alpha = 0.5,
parallel = FALSE, maxit = 100L, verbose = 1, method = "diag",
type = NULL, sep.nclust = TRUE, ...)

Arguments

data A three-way array representing the data.
margin An integer giving the single subscript of data over which the clustering will be

applied.
delta A four-element binary vector (logical or numeric) indicating which sum-to-zero

constraints must be enforced.
nclust A vector of length four giving the number of clusters for the overall mean, the

row margins, the column margins and the interactions (in that order) respec-
tively. Alternatively, a vector of length one, in which case all components will
have the same number of clusters.

ndim The required rank for the approximation of the interactions (a scalar).
fixed One of "none", "rows" or "columns" indicating whether to fix neither sets of

coordinates, or whether to fix the row or column coordinates across clusters
respectively. If a vector is supplied, only the first element will be used (passed
to int.lsbclust).

18 lsbclust

nstart The number of random starts to use for the interaction clustering.

starts A list containing starting configurations for the cluster membership vector. If not
supplied, random initializations will be generated (passed to int.lsbclust).

nstart.kmeans The number of random starts to use in kmeans.

alpha Numeric value in [0, 1] which determines how the singular values are distributed
between rows and columns (passed to int.lsbclust).

parallel Logical indicating whether to parallel over different starts or not (passed to
int.lsbclust).

maxit The maximum number of iterations allowed in the interaction clustering.

verbose Integer controlling the amount of information printed: 0 = no information, 1 =
Information on random starts and progress, and 2 = information is printed after
each iteration for the interaction clustering.

method The method for calculating cluster agreement across random starts, passed on to
cl_agreement (passed to int.lsbclust).

type One of "rows", "columns" or "overall" (or a unique abbreviation of one of
these) indicating whether clustering should be done on row margins, column
margins or the overall means of the two-way slices respectively. If more than
one opion are supplied, the algorithm is run for all (unique) options supplied
(passed to orc.lsbclust). This is an optional argument.

sep.nclust Logical indicating how nclust should be used across different type’s. If sep.nclust
is TRUE, nclust is recycled so that each type can have a different number of
clusters. If sep.nclust is FALSE, the same vector nclust is used for all type’s.

... Additional arguments passed to kmeans.

Value

Returns an object of S3 class lsbclust which has slots:

overall Object of class ovl.kmeans for the overall means clustering

rows Object of class row.kmeans for the row means clustering

columns Object of class col.kmeans for the column means clustering

interactions Object of class int.lsbclust for the interaction clustering

call The function call used to create the object

delta The value of delta in the fit

df Breakdown of the degrees-of-freedom across the different subproblems

loss Breakdown of the loss across subproblems

time Time taken in seconds to calculate the solution

cluster Matrix of cluster membership per observation for all cluster types

References

Schoonees, P.C., Groenen, P.J.F., Van de Velden, M. Least-squares Bilinear Clustering of Three-way
Data. Econometric Institute Report, EI2014-23.

meanbiplot 19

See Also

int.lsbclust, orc.lsbclust

meanbiplot Biplots of

Description

Construct simple two-dimensional biplots given matrices representing the rows and columns of a
two-dimensional matrix using ggplot2.

Usage

meanbiplot(rows, cols)

Arguments

rows A list of matrices representing the rows

cols A list of matrices representing the columns

Examples

set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
meanbiplot(dat[[1]]$interactions$C, dat[[1]]$interactions$D)

meanheatmap Plot Heatmap of A Matrix

Description

Construct a heatmap of a matrix using ggplot2.

Usage

meanheatmap(x)

Arguments

x Matrix or list of matrices to be plotted

Examples

set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(6, 6), nclust = c(5, 4, 6, 5))
meanheatmap(Map(tcrossprod, dat[[1]]$interactions$C, dat[[1]]$interactions$D))

20 orc.lsbclust

orc.lsbclust K-means on the Overall Mean, Row Margins or Column Margins

Description

This function conducts k-means on the overall mean, the row margins or column margins of a set
of N matrices. These matrices are two-way slices of a three-dimensional array.

Usage

orc.lsbclust(data, margin = 3L, delta, nclust, sep.nclust = TRUE,
type = NULL, verbose = 1, ...)

Arguments

data A three-way array representing the data.
margin An integer giving the single subscript of data over which the clustering will be

applied.
delta A four-element binary vector (logical or numeric) indicating which sum-to-zero

constraints must be enforced.
nclust An integer giving the desired number of clusters. In case type specifies more

than one method, nclust can be a vector containing the number of clusters to
be determined for each type of cluster, and in the correct order as determined by
type (after matching the arguments). If type is of length greater than one and
nclust is of length one, the behaviour is governed by sep.nclust.

sep.nclust Logical indicating how nclust should be used across different type’s. If sep.nclust
is TRUE, nclust is recycled so that each type can have a different number of
clusters. If sep.nclust is FALSE, the same vector nclust is used for all type’s.

type One of "overall", "rows" or "columns" (or a unique abbreviation of one of
these) indicating whether clustering should be done on row margins, column
margins or the overall means of the two-way slices respectively. If more than
one opion are supplied, the algorithm is run for all (unique) options supplied.

verbose Integer controlling the amount of information printed: 0 = no information, 1 =
Information on random starts and progress, and 2 = information is printed after
each iteration for the interaction clustering.

... Additional arguments passed to kmeans.

Value

A list containing a subset of the classes row.kmeans, col.kmeans and ovl.kmeans which are
specific versions of class kmeans. In case type is a vector, a list is returned containing the results
for each of the (unique) elements of type, with the same classes as before. See kmeans for an
overview of the structure of these objects.

See Also

kmeans

plot.bicomp 21

plot.bicomp Plot a bicomp Object

Description

Plot method for an object of class bicomp (see bicomp).

Usage

S3 method for class 'bicomp'
plot(x, which = 0L:4L, arrange = TRUE,
col = c("red4", "beige", "blue4"), strip.legend = TRUE,
add.titles = FALSE, ...)

Arguments

x An object of class bicomp.

which A numeric vector indicating which matrices to plot, with 0 = original data, 1 =
overall means, 2 = row means, 3 = column means and 4 = interactions.

arrange Logical indicating whether the arrange the plots side-by-side via grid.arrange
or not.

col A character vector of length three giving the parameters low, mid and high for
scale_fill_gradient2.

strip.legend Logical indicating whether to strip the legend off the plot or not.

add.titles Logical indicating whether to add titles to the plots or not.

... Additional arguments to theme.

plot.col.kmeans Plot method for class ’col.kmeans’

Description

Simple plot method for object of class ’col.kmeans’ as output by orc.lsbclust.

Usage

S3 method for class 'col.kmeans'
plot(x, which = 1L, ...)

Arguments

x An object of class col.kmeans

which Which type of plot to produce (only 3 types are implemented).

... additional arguments passed to theme.

22 plot.int.lsbclust

Author(s)

Pieter C. Schoonees

Examples

data("dcars")
m <- orc.lsbclust(data = dcars, margin = 3, delta = c(1,1,1,1), nclust = 5, type = "columns")
plot(m)

plot.int.lsbclust Plot Method for Class ’int.lsbclust’

Description

Two-dimensional plot method for object of class ’int.lsbclust’ as output by int.lsbclust.

Usage

S3 method for class 'int.lsbclust'
plot(x, which = seq_len(nclust),
plot.type = c("biplots", "means", "estimates"), segments = NULL,
biplot.axes = TRUE, nmarkers = 5, alpha = NULL,
check.alpha = TRUE, fix.alpha = FALSE, probs = 0,
arrange = FALSE, fix.limits = TRUE, limit.exp = 1.05,
lambda.scale = TRUE, procrustes.rotation = x$fixed == "none",
fix.lambda = FALSE, labs.grey = TRUE, label.0 = FALSE,
tick.length = 0.0075 * diff(lims), axis.col = "grey60",
label.size = 3, axis.size = 0.25, axis.title.size = 4,
draw.axis = NULL, points.col = list(rows = "red", columns = "blue2"),
offset.tick.labels = 3.5, offset.axis.title = list(rows = 0.015 *
max(nchar(rnms)), columns = 0.015 * max(nchar(cnms))),
axis.arrow = grid::arrow(angle = 20, length = grid::unit(0.0175,
"npc")), ...)

Arguments

x An object of class int.lsbclust.

which A vector indicating which item segments to plot.

plot.type Character string giving the type of plots to produce: either "biplots" for the
biplots approximating the cluster means, "means" for level plots of the cluster
means themselves or "estimates" for level plots of the low-rank approxima-
tions of the cluster means (as represented in the biplots).

segments A logical vector with two elements, indicating whether the rows and columns
should be plotted as line segments or not.

biplot.axes A logical indicating whether to plot calibrated biplot axes for the line segments
indicated in segments or not.

plot.int.lsbclust 23

nmarkers Either a single integer giving the number of desired markers per biplot axis for
all axes, or a named list. This is passed as the argument n to pretty. See
Details for information on the list option.

alpha Numeric value in [0, 1] which determines how the singular values are distributed
between rows and columns. It will trigger a recomputation of the updates if it
does not correspond to the value used when fitting the model. Do not confuse
this with the term "alpha" used in the context of colour transparency.

check.alpha Logical indicating whether to look for a better alpha. This is only used when
alpha = NULL is used. Do not confuse this with the term "alpha" used in the
context of colour transparency.

fix.alpha Logical indicating whether to fix alpha across all clusters or not when fixed ==
"none". Do not confuse this with the term "alpha" used in the context of colour
transparency.

probs Argument passed to quantile to determine the alpha value. The corresponding
quantile of the distances of all points in the biplots to the origin will be used to
determine alpha in case check.alpha = TRUE.

arrange Logical indicating whether to arrange the plots side-by-side via grid.arrange
or not.

fix.limits Logical indicating whether biplot x- and y-limits must be fixed across clusters or
not. Note that this is automatically set to TRUE when fixed == "rows" or fixed
== "columns". When limits are fixed, the axis calibrations are also turned off.

limit.exp A numeric expansion factor applied multiplicatively to the plot limits, but only
when fixed equals "rows" or "columns".

lambda.scale Logical indicating whether to apply lambda scaling to the coordinates or not. If
true, the scaling is done such that the average squared distance to the origin is
equal for the row and column coordinates.

procrustes.rotation

Logical indicating whether to do Procrustes rotations so that the location of the
axes indicated as segments (see argument segments) are similar across config-
urations.

fix.lambda Logical indicating whether to fix lambda across all clusters or not.

labs.grey Logical indicating whether to apply greying to the text labels are well.

label.0 Logical indicating whether to label the origin or not.

tick.length The required tick length as a unit object. It defaults to a propoprtion of the
width of the plot region (through lazy evaluation).

axis.col The colour of the biplot axes.

label.size The size of the labels for the markers on the biplot axes.

axis.size Line size for biplot axes.
axis.title.size

Size of biplot axis titles.

draw.axis A list with up to two components which must be named "rows" and "columns".
Each element contains a vector indicating which biplot axes should be drawn.
The vectors can be character vectors containing the names of the axes to be

24 plot.lsbclust

drawn, numeric vectors containing indices indicating which axes to draw, or
logical vectors indicating which biplot axes to draw. In case of the default value
NULL, the elements of segments are used for the "rows" and "columns" entries.

points.col A named list containing the colours to use for plotting the sets of points. The el-
ements "rows" and "columns" contain vectors giving the colours for the points.
Single element vectors are recycled across the different points, otherwise the
vectors must be of the appropriate length.

offset.tick.labels

A numeric value giving the offset factor of the biplot axis marker labels from
their respective tick marks. Higher (lower) values lead to labels being further
from (nearer to) their respective tick marks.

offset.axis.title

A names list of (up to) two numeric values giving the fixed length offset of the
biplot axis title label from the end of the axis segment. The two elements must
have names "rows" and code"columns".

axis.arrow An arrow object to be used for the endpoints of biplot axis segment lines. This
is passed to geom_segment.

... Additional arguments passed to theme.

Details

In case nmarkers is a list, it can have up to two elements. These are required to be named "rows"
and/or "columns", otherwise an error will be thrown. The elements of the list contains either single
numeric values each or numeric vectors of the appropriate lengths indicating the n argument passed
to pretty.

In some cases, the row and/or column fit values can contain non-finite values. If that occurs, colour
transparency cannot and will not be used for that particular element (and this can vary between
clusters). This relates to the alpha parameter in the plotting routines.

plot.lsbclust Plot method for class ’lsbclust’

Description

This plot method simply plots each of the components in the list of class lsbclust.

Usage

S3 method for class 'lsbclust'
plot(x, type = c("overall", "rows", "columns",
"interactions"), biplot.axes = TRUE, ...)

plot.ovl.kmeans 25

Arguments

x An object of class orc.kmeans

type A character vector indicating which component(s) of x to plot: a combination of
"overall", "rows", "columns" and "interactions".

biplot.axes A logical indicating whether to plot calibrated biplot axes for the line segments
indicated in segments or not.

... additional arguments passed to the plot methods of the respective components,
typically to theme. Use e.g. plot(x$interactions) for more control over the
respective plots.

Author(s)

Pieter C. Schoonees

See Also

plot.int.lsbclust, plot.ovl.kmeans, plot.row.kmeans, plot.col.kmeans

Examples

data("dcars")
m <- lsbclust(data = dcars, margin = 3, delta = c(1, 1, 1, 1), nclust = 5, nstart = 1)
plot(m)

plot.ovl.kmeans Plot method for class ’ovl.kmeans’

Description

Simple plot method for object of class ’ovl.kmeans’ as output by orc.lsbclust.

Usage

S3 method for class 'ovl.kmeans'
plot(x, which = 1L, ...)

Arguments

x An object of class ovl.kmeans

which Which type of plot to produce. Currently only which = 1 is implemented.

... additional arguments passed to theme.

Author(s)

Pieter C. Schoonees

26 plot.step.lsbclust

Examples

data("dcars")
m <- orc.lsbclust(data = dcars, margin = 3, delta = c(1,1,1,1), nclust = 5, type = "overall")
plot(m)

plot.row.kmeans Plot method for class ’row.kmeans’

Description

Simple plot method for object of class ’row.kmeans’ as output by orc.lsbclust.

Usage

S3 method for class 'row.kmeans'
plot(x, which = 1L, ...)

Arguments

x An object of class row.kmeans

which Which type of plot to produce (only 3 types are implemented).

... additional arguments passed to theme.

Author(s)

Pieter C. Schoonees

Examples

data("dcars")
m <- orc.lsbclust(data = dcars, margin = 3, delta = c(1,1,1,1), nclust = 5, type = "rows")
plot(m)

plot.step.lsbclust Plot method for class ’step.lsbclust’

Description

Plot ’step.lsbclust’ objects.

Usage

S3 method for class 'step.lsbclust'
plot(x, which = 1L:5L, col.all = NULL,
arrange = FALSE, chull = FALSE, ...)

plot.T3Clusf 27

Arguments

x An object of class step.lsbclust

which Which type of plot to produce.

col.all A character vector of length one indicating which of "overall", "rows", "columns"
or "interactions" should be mapped to colour in the plot for all possible mod-
els. Care needs to be taken that the stated component is included in the fit.

arrange Logical indicating whether the arrange the plots side-by-side via grid.arrange
or not.

chull Logical indicating whether to plot the estimated convex hull or not.

... additional arguments passed to theme.

Author(s)

Pieter C. Schoonees

plot.T3Clusf Plot Method for Class ’T3Clusf’

Description

Two-dimensional plot method for object of class ’T3Clusf’ as output by T3Clusf.

Usage

S3 method for class 'T3Clusf'
plot(x, which = seq_len(nclust), arrange = FALSE,
...)

Arguments

x An object of class T3Clusf.

which An integer vector indicating which item segments to plot.

arrange Logical indicating whether to arrange the plots on a single page or not

... Additional arguments to theme

28 rlsbclust

print.lsbclust Print method for object of class ’lsbclust’

Description

Print a ’lsbclust’ object.

Usage

S3 method for class 'lsbclust'
print(x, ...)

Arguments

x An object of class ’lsbclust’

... Unimplemented.

rlsbclust Simulate from LSBCLUST Model

Description

Simulate three-way arrays adhering to the LSBCLUST framework (see lsbclust).

Usage

rlsbclust(ndata = 50L, nobs, size, nclust, clustsize = NULL,
delta = rep(1L, 4L), ndim = 2L, alpha = 0.5, fixed = c("none",
"rows", "columns"), err_sd = 1, svmins = 1, svmax = 6)

Arguments

ndata Integer giving the number of data sets to generate with the same underlying
parameters.

nobs Integer giving the number of observations to sample.

size Vector with two elements giving the number of rows and columns respectively
of each simulated observation.

nclust A vector of length four giving the number of clusters for the overall mean, the
row margins, the column margins and the interactions (in that order) respec-
tively. Alternatively, a vector of length one, in which case all components will
have the same number of clusters.

rlsbclust 29

clustsize A list of length four, with each element containing a vector of the same length
as the corresponding entry in nclust, indicating the number of elements to con-
tribute to each sample. Naturally, each of these vectors must sum to nobs, or
an error will result. Positional matching are used, in the order "overall", "rows",
"columns" and "interactions". If NULL, all clusters will be of equal size.

delta A four-element binary vector (logical or numeric) indicating which sum-to-zero
constraints must be enforced.

ndim The required rank for the approximation of the interactions (a scalar).

alpha Numeric value in [0, 1] which determines how the singular values are distributed
between rows and columns (passed to int.lsbclust).

fixed One of "none", "rows" or "columns" indicating whether to fix neither sets of
coordinates, or whether to fix the row or column coordinates across clusters
respectively. If a vector is supplied, only the first element will be used (passed
to int.lsbclust).

err_sd The standard deviation of the error distribution, as passed to rnorm

svmins Vector of minimum values for the singular values (as passed to simsv). Option-
ally, if all minima are equal, a single numeric value which will be expanded to
the correct length.

svmax The maximum possible singular value (as passed to simsv)

Examples

Nothing fixed, balanced classes
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5))
cfsim(res, dat[[1]])

Rows fixed, balanced classes
set.seed(2)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5),

fixed = "rows")
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5), fixed = "rows")
cfsim(res, dat[[1]])

Rows fixed, unbalanced classes
set.seed(3)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5),

fixed = "columns",
clustsize = list(NULL, NULL, c(40, 25, 15, 10, 5, 5), c(40, 25, 15, 10, 10)))

res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5), fixed = "columns")
cfsim(res, dat[[1]])

30 simsv

rorth Generate A Random Orthonormal Matrix

Description

Uniformly sample an orthornormal matrix from the collection of all possible orthonormal matrices
of a certain size. The QR decomposition is used on a matrix containing Gaussian random numbers.
The QR decomposition might not be the most efficient algorithm under some circumstances.

Usage

rorth(nrow, ncol, sd = 1)

Arguments

nrow Integer giving the number of rows required.

ncol Integer giving the number of columns required.

sd The standard deviation passed to rnorm

References

Stewart, G. W. (1980). The efficient generation of random orthogonal matrices with an application
to condition estimators. SIAM Journal on Numerical Analysis, 17(3), 403-409.

Examples

set.seed(1)
rorth(5, 2)

simsv Randomly Generate Positive Singular Values

Description

Generate random singular values for a specified number of clusters for use in simulations. A mixture
distribution is used with truncation to ensure that the singular values differ between clusters, are
ordered, and are nonnegative.

Usage

simsv(nclust, ndim = 2, mins = 1, max = 5)

sim_lsbclust 31

Arguments

nclust Integer giving the number of clusters for which to sample singular values.

ndim Integer; the number of singular values required.

mins Numeric vector of length ndim giving the minimum values for the respective
singular values.

max Numeric value giving the maximum possible value for the mean of the cluster-
specific singular value distribution, relative to the mins

sim_lsbclust Simulate and Analyze LSBCLUST

Description

Perform a single simulation run for the LSBCLUST model. Multiple data sets are generated for a
single set of underlying parameters,

Usage

sim_lsbclust(ndata, nobs, size, nclust, clustsize = NULL,
delta = rep(1L, 4L), ndim = 2L, alpha = 0.5, fixed = c("none",
"rows", "columns"), err_sd = 1, svmins = 0.5, svmax = 5,
seed = NULL, parallel = FALSE, parallel_data = TRUE, verbose = 0,
nstart_T3 = 20L, nstart_ak = 20L, mc.cores = detectCores() - 1,
include_fits = FALSE, include_data = FALSE, nstart, nstart.kmeans)

Arguments

ndata Integer giving the number of data sets to generate with the same underlying
parameters.

nobs Integer giving the number of observations to sample.

size Vector with two elements giving the number of rows and columns respectively
of each simulated observation.

nclust A vector of length four giving the number of clusters for the overall mean, the
row margins, the column margins and the interactions (in that order) respec-
tively. Alternatively, a vector of length one, in which case all components will
have the same number of clusters.

clustsize A list of length four, with each element containing a vector of the same length
as the corresponding entry in nclust, indicating the number of elements to con-
tribute to each sample. Naturally, each of these vectors must sum to nobs, or
an error will result. Positional matching are used, in the order "overall", "rows",
"columns" and "interactions". If NULL, all clusters will be of equal size.

delta A four-element binary vector (logical or numeric) indicating which sum-to-zero
constraints must be enforced.

ndim The required rank for the approximation of the interactions (a scalar).

32 step.lsbclust

alpha Numeric value in [0, 1] which determines how the singular values are distributed
between rows and columns (passed to int.lsbclust).

fixed One of "none", "rows" or "columns" indicating whether to fix neither sets of
coordinates, or whether to fix the row or column coordinates across clusters
respectively. If a vector is supplied, only the first element will be used (passed
to int.lsbclust).

err_sd The standard deviation of the error distribution, as passed to rnorm

svmins Vector of minimum values for the singular values (as passed to simsv). Option-
ally, if all minima are equal, a single numeric value which will be expanded to
the correct length.

svmax The maximum possible singular value (as passed to simsv)

seed An optional seed to be set for the random number generator

parallel Logical indicating whether to parallelize over random starts. Note that parallel_data
has precedence over this

parallel_data Logical indicating whether to parallelize over the data sets. If FALSE, paral-
lelization is done over random starts (depending on parallel).

verbose Integer giving the number of iterations after which the loss values is printed.

nstart_T3 The number of random starts to use for T3Clusf

nstart_ak The number of random starts to use for akmeans

mc.cores The number of cores to use, passed to makeCluster

include_fits Logical indicating whether to include the model fits, or or only the fit statistics

include_data Logical indicating whether to include the simulated data fitted on, or only the
results

nstart From lsbclust

nstart.kmeans From lsbclust

Examples

set.seed(1)
res <- sim_lsbclust(ndata = 5, nobs = 100, size = c(10, 8), nclust = rep(5, 4),

verbose = 0, nstart_T3 = 2, nstart_ak = 1, parallel_data = FALSE,
nstart = 2, nstart.kmeans = 5)

step.lsbclust Model Search for lsbclust

Description

Fit lsbclust models for different numbers of clusters and/or different values of delta. The result-
ing output can be inspected through its plot method to facilitate model selection. Each component
of the model is fitted separately.

step.lsbclust 33

Usage

step.lsbclust(data, margin = 3L, delta = c(1, 1, 1, 1), nclust,
ndim = 2, fixed = c("none", "rows", "columns"), nstart = 20,
starts = NULL, nstart.kmeans = 500, alpha = 0.5,
parallel = FALSE, maxit = 100, verbose = -1, type = NULL, ...)

Arguments

data A three-way array representing the data.

margin An integer giving the single subscript of data over which the clustering will be
applied.

delta A four-element binary vector (logical or numeric) indicating which sum-to-zero
constraints must be enforced.

nclust Either a vector giving the number of clusters which will be applied to each ele-
ment of the model, that is to (a subset of) the overall mean, row margins, column
margins and interactions. If it is a list, arguments are matched by the names
"overall", "rows" "columns" and "interactions". If the list does not have
names, the components are extracted in the aforementioned order.

ndim The required rank for the approximation of the interactions (a scalar).

fixed One of "none", "rows" or "columns" indicating whether to fix neither sets of
coordinates, or whether to fix the row or column coordinates across clusters
respectively. If a vector is supplied, only the first element will be used (passed
to int.lsbclust).

nstart The number of random starts to use for the interaction clustering.

starts A list containing starting configurations for the cluster membership vector. If not
supplied, random initializations will be generated (passed to int.lsbclust).

nstart.kmeans The number of random starts to use in kmeans.

alpha Numeric value in [0, 1] which determines how the singular values are distributed
between rows and columns (passed to int.lsbclust).

parallel Logical indicating whether to parallelize over different starts or not (passed to
int.lsbclust).

maxit The maximum number of iterations allowed in the interaction clustering.

verbose The number of iterations after which information on progress is provided (passed
to int.lsbclust).

type One of "rows", "columns" or "overall" (or a unique abbreviation of one of
these) indicating whether clustering should be done on row margins, column
margins or the overall means of the two-way slices respectively. If more than
one opion are supplied, the algorithm is run for all (unique) options supplied
(passed to orc.lsbclust). This is an optional argument.

... Additional arguments passed to kmeans.

34 summary.lsbclust

Examples

m <- step.lsbclust(data = dcars, margin = 3, delta = c(1, 0, 1, 0), nclust = 4:5,
ndim = 2, fixed = "columns", nstart = 1, nstart.kmeans = 100,
parallel = FALSE)

For a list of all deltas
delta <- expand.grid(replicate(4, c(0,1), simplify = FALSE))
delta <- with(delta, delta[!(Var1 == 0 & Var3 == 1),])
delta <- with(delta, delta[!(Var2 == 0 & Var4 == 1),])
delta <- delta[-4,]
delta <- as.list(as.data.frame(t(delta)))
m2 <- step.lsbclust(data = dcars, margin = 3, delta = delta, nclust = 4:5,

ndim = 2, fixed = "columns", nstart = 1, nstart.kmeans = 100,
parallel = FALSE)

summary.int.lsbclust Summary Method for Class "int.lsbclust"

Description

Some goodness-of-fit diagnostics are provided for all three margins.

Usage

S3 method for class 'int.lsbclust'
summary(object, digits = 3, ...)

Arguments

object An object of class ’int.lsbclust’.

digits The number of digits in the printed output.

... Unimplemented.

summary.lsbclust Summary Method for Class "lsbclust"

Description

Summarize a lsbclust object.

Usage

S3 method for class 'lsbclust'
summary(object, digits = 3, ...)

supermarkets 35

Arguments

object An object of class ’lsbclust’.

digits The number of digits in the printed output.

... Unimplemented.

supermarkets Dutch Supermarkets Data Set

Description

This data set relates to 220 consumers rating 10 Dutch supermarket chains according to 8 variables.
A rating scale from 1 to 10 was used.

Usage

supermarkets

Format

A three-way array with supermarkets in the first dimension, variables in the second and consumers
in the third dimension.

Source

Michel van de Velden

Examples

data("supermarkets")
fit <- lsbclust(data = supermarkets, nclust = 6, fixed = "rows", nstart = 2)

T3Clusf T3Clusf: Tucker3 Fuzzy Cluster Analysis

Description

This is an implementation of the T3Clusf algorithm of Rocci & Vichi (2005).

Usage

T3Clusf(X, Q, R = Q, G = 2, margin = 3L, alpha = 1, eps = 1e-08,
maxit = 100L, verbose = 1, nstart = 1L, parallel = TRUE,
mc.cores = detectCores() - 1L, minsize = 3L)

36 T3Clusf

Arguments

X Three-way data array, with no missing values.

Q Integer giving the number of dimensions required for mode B (variables). This
is the first mode of the array, excluding the mode clustered over (see margin).

R Integer giving the number of dimensions required for mode C (occasions). This
is the second mode of the array, excluding the mode clustered over (see margin).

G Integer giving the number of clusters required.

margin Integer giving the margin of the array to cluster over. The remaining two modes,
in the original order, corresponds to Q and R.

alpha Numeric value giving the fuzziness parameter.

eps Small numeric value giving the empirical convergence threshold.

maxit Integer giving the maximum number of iterations allowed.

verbose Integer giving the number of iterations after which the loss values are printed.

nstart Integer giving the number of random starts required.

parallel Logical indicating whether to parallelize over random starts if nstart > 1.

mc.cores Argument passed to makeCluster.

minsize Integer giving the minimum size of cluster to uphold when reinitializing empty
clusters.

References

Rocci, R., & Vichi, M. (2005). Three-mode component analysis with crisp or fuzzy partition of
units. Psychometrika, 70(4), 715-736.

Examples

data("dcars")
set.seed(13)
res <- T3Clusf(X = carray(dcars), Q = 3, R = 2, G = 3, alpha = 1)

Index

∗ hplot
plot.col.kmeans, 21
plot.int.lsbclust, 22
plot.lsbclust, 24
plot.ovl.kmeans, 25
plot.row.kmeans, 26
plot.step.lsbclust, 26
plot.T3Clusf, 27

∗ package
lsbclust-package, 3

akmeans, 3, 5, 10, 32
arrow, 24
AssignCluster (KMeansW), 14

bicomp, 4, 21

carray, 4
cfsim, 5
cfsim.akmeans, 5
cfsim.lsbclust, 5, 6
cfsim.T3Clusf, 5, 6
cl_agreement, 5–7, 14, 18
cl_class_ids.akmeans

(cl_class_ids.int.lsbclust), 8
cl_class_ids.int.lsbclust, 8
cl_class_ids.lsbclust_sim_part

(cl_class_ids.int.lsbclust), 8
cl_class_ids.T3Clusf

(cl_class_ids.int.lsbclust), 8
ClustMeans, 7
cmat, 9
col.kmeans (orc.lsbclust), 20
ComputeMeans (KMeansW), 14

dcars, 9

fitted, 10, 11
fitted.akmeans, 10
fitted.lsbclust, 11
fitted.T3Clusf, 11

genproc, 12
geom_segment, 24
grid.arrange, 21, 23, 27

indarr, 12
int.lsbclust, 13, 17–19, 22, 29, 32, 33
is.cl_hard_partition.akmeans

(cl_class_ids.int.lsbclust), 8
is.cl_hard_partition.int.lsbclust

(cl_class_ids.int.lsbclust), 8
is.cl_hard_partition.lsbclust_sim_part

(cl_class_ids.int.lsbclust), 8
is.cl_hard_partition.T3Clusf

(cl_class_ids.int.lsbclust), 8
is.cl_partition.akmeans

(cl_class_ids.int.lsbclust), 8
is.cl_partition.int.lsbclust

(cl_class_ids.int.lsbclust), 8
is.cl_partition.lsbclust_sim_part

(cl_class_ids.int.lsbclust), 8
is.cl_partition.T3Clusf

(cl_class_ids.int.lsbclust), 8

kmeans, 3, 18, 20, 33
KMeansW, 14

LossMat, 15
lov, 16
lsbclust, 6, 11, 17, 28, 32
lsbclust-package, 3

makeCluster, 14, 32, 36
meanbiplot, 19
meanheatmap, 19

orc.lsbclust, 18, 19, 20, 21, 25, 26, 33
ovl.kmeans (orc.lsbclust), 20

plot.bicomp, 21
plot.col.kmeans, 21, 25
plot.int.lsbclust, 22, 25

37

38 INDEX

plot.lsbclust, 24
plot.ovl.kmeans, 25, 25
plot.row.kmeans, 25, 26
plot.step.lsbclust, 26
plot.T3Clusf, 27
pretty, 23, 24
print.lsbclust, 28

quantile, 23

rlsbclust, 5, 6, 28
rnorm, 29, 30, 32
rorth, 30
row.kmeans (orc.lsbclust), 20

scale_fill_gradient2, 21
sim_lsbclust, 31
simsv, 29, 30, 32
step.lsbclust, 32
summary.int.lsbclust, 34
summary.lsbclust, 34
supermarkets, 35
svd, 3

T3Clusf, 6, 12, 27, 32, 35
theme, 21, 24–27

unit, 23

	lsbclust-package
	akmeans
	bicomp
	carray
	cfsim
	cfsim.akmeans
	cfsim.lsbclust
	cfsim.T3Clusf
	ClustMeans
	cl_class_ids.int.lsbclust
	cmat
	dcars
	fitted.akmeans
	fitted.lsbclust
	fitted.T3Clusf
	genproc
	indarr
	int.lsbclust
	KMeansW
	LossMat
	lov
	lsbclust
	meanbiplot
	meanheatmap
	orc.lsbclust
	plot.bicomp
	plot.col.kmeans
	plot.int.lsbclust
	plot.lsbclust
	plot.ovl.kmeans
	plot.row.kmeans
	plot.step.lsbclust
	plot.T3Clusf
	print.lsbclust
	rlsbclust
	rorth
	simsv
	sim_lsbclust
	step.lsbclust
	summary.int.lsbclust
	summary.lsbclust
	supermarkets
	T3Clusf
	Index

